196 research outputs found

    Relativistic general-order coupled-cluster method for high-precision calculations: Application to Al+ atomic clock

    Get PDF
    We report the implementation of a general-order relativistic coupled-cluster method for performing high-precision calculations of atomic and molecular properties. As a first application, the static dipole polarizabilities of the ground and first excited states of Al+ have been determined to precisely estimate the uncertainty associated with the BBR shift of its clock frequency measurement. The obtained relative BBR shift is -3.66+-0.44 for the 3s^2 ^1S_0^0 --> 3s3p ^3P_0^0 transition in Al+ in contrast to the value obtained in the latest clock frequency measurement, -9+-3 [Phys. Rev. Lett. 104, 070802 (2010)]. The method developed in the present work can be employed to study a variety of subtle effects such as fundamental symmetry violations in atoms.Comment: 4 pages, 3 tables, submitte

    Building one molecule from a reservoir of two atoms

    Get PDF
    Chemical reactions typically proceed via stochastic encounters between reactants. Going beyond this paradigm, we combine exactly two atoms into a single, controlled reaction. The experimental apparatus traps two individual laser-cooled atoms (one sodium and one cesium) in separate optical tweezers and then merges them into one optical dipole trap. Subsequently, photoassociation forms an excited-state NaCs molecule. The discovery of previously unseen resonances near the molecular dissociation threshold and measurement of collision rates are enabled by the tightly trapped ultracold sample of atoms. As laser-cooling and trapping capabilities are extended to more elements, the technique will enable the study of more diverse, and eventually more complex, molecules in an isolated environment, as well as synthesis of designer molecules for qubits

    Preparation of Dicke States in an Ion Chain

    Full text link
    We have investigated theoretically and experimentally a method for preparing Dicke states in trapped atomic ions. We consider a linear chain of NN ion qubits that is prepared in a particular Fock state of motion, m>|m>. The mm phonons are removed by applying a laser pulse globally to the NN qubits, and converting the motional excitation to mm flipped spins. The global nature of this pulse ensures that the mm flipped spins are shared by all the target ions in a state that is a close approximation to the Dicke state \D{N}{m}. We calculate numerically the fidelity limits of the protocol and find small deviations from the ideal state for m=1m = 1 and m=2m = 2. We have demonstrated the basic features of this protocol by preparing the state \D{2}{1} in two 25^{25}Mg+^+ target ions trapped simultaneously with an 27^{27}Al+^+ ancillary ion.Comment: 5 pages, 2 figure

    Quantum information processing with trapped ions

    Full text link
    Experiments directed towards the development of a quantum computer based on trapped atomic ions are described briefly. We discuss the implementation of single qubit operations and gates between qubits. A geometric phase gate between two ion qubits is described. Limitations of the trapped-ion method such as those caused by Stark shifts and spontaneous emission are addressed. Finally, we describe a strategy to realize a large-scale device.Comment: Article submitted by D. J. Wineland ([email protected]) for proceeding of the Discussion Meeting on Practical Realisations of Quantum Information Processing, held at the Royal Society, Nov. 13,14, 200
    corecore